Molecular Dynamics of Nucleation Process of Single-Walled Carbon Nanotubes

نویسندگان

  • Yasushi SHIBUTA
  • Shigeo MARUYAMA
  • Shigenao MARUYAMA
چکیده

Interaction between catalytic metals and carbon atoms on formation process of SWNTs are studied by the home-made multi-body potentials base on density functional theory calculations of small metal-carbon binary clusters. The Co cluster has a partially crystal structure where metal atoms are regularly allocated and embedded in the hexagonal carbon network. On the other hand, carbon atoms cover the entire surface of the Fe cluster. This implies stronger interaction between the graphitic lattice and Co atoms than Fe atoms. The difference of graphitization ability may reflect the ability as a catalyst on the formation process of an SWNT.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular Dynamics Investigation of The Elastic Constants and Moduli of Single Walled Carbon Nanotubes

Determination of the mechanical properties of carbon nanotubes is an essential step in their applications from macroscopic composites to nano-electro-mechanical systems. In this paper we report the results of a series of molecular dynamics simulations carried out to predict the elastic constants, i.e. the elements of the stiffness tensor, and the elastic moduli, namely the Young’s and shear mod...

متن کامل

Radius Dependence of Hydrogen Storage Inside Single Walled Carbon Nanotubes in an Array

In this study, we have investigated radius dependence of hydrogen storage within armchair (n,n) single walled carbon nanotubes (SWCNT) in a square arrays. To this aim, we have employed equilibrium molecular dynamics (MD) simulation. Our simulations results reveal that radius of carbon nanotubes are an important and influent factor in hydrogen distribution inside carbon nanotubes and consequentl...

متن کامل

Nonlocal Flügge shell model for the axial buckling of single-walled Carbon nanotubes: An analytical approach

In this paper, the stability characteristics of single-walled carbon nanotubes (SWCNTs) under the action of axial load are investigated. To this end, a nonlocal Flügge shell model is developed to accommodate the small length scale effects. The analytical Rayleigh-Ritz method with beam functions is applied to the variational statement derived from the Flügge-type buckling equations. Molecular dy...

متن کامل

Molecular Dynamics Simulation of Nucleation Process of Single-Walled Carbon Nanotubes

Nucleation process of single-walled carbon nanotubes by the catalytic chemical vapor deposition method is studied by classical molecular dynamics simulation. We start the calculation with randomly distributed carbon-source molecules and a nickel cluster to investigate the metal-catalyzed growth of a cap-structure of a nanotube. When the catalytic cluster reaches saturation with carbon atoms, he...

متن کامل

Nonlocal Flügge shell model for the axial buckling of single-walled Carbon nanotubes: An analytical approach

In this paper, the stability characteristics of single-walled carbon nanotubes (SWCNTs) under the action of axial load are investigated. To this end, a nonlocal Flügge shell model is developed to accommodate the small length scale effects. The analytical Rayleigh-Ritz method with beam functions is applied to the variational statement derived from the Flügge-type buckling equations. Molecular dy...

متن کامل

A molecular dynamics study of the effect of a substrate on catalytic metal clusters in nucleation process of single-walled carbon nanotubes

Yasushi Shibuta*, Shigeo Maruyama Department of Materials Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan Department of Mechanical Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan Abstract The effect of the substrate on catalytic metal clusters in nucleation process of single-walled carbon nanotubes was studied by classical mo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004